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Several forecasting models were evaluated with respect to their forecasting accuracy using
NASA Space Shuttle failure data. Simple models like exponential smoothing are attractive if
the forecasting range can be limited. This is the case because these models use the most recent
data in making a forecast. In other cases, where forecasts must be made over a wide range,
software reliability models are superior. The reason is that these models use a larger set of
data in making parameter estimates. This feature results in more accurate forecasts over
a wider range of time periods in the future. We found that significant improvements could
be made to forecasting accuracy for all models by the simple process of modifying original
forecasts based on the relative errors of those forecasts.

I. Introduction

OUR purpose is to experiment with various forecasting models to see how accurate they are for forecasting
NASA Space Shuttle software reliability metrics. Shuttle failure data is used because we have the data, but the

experimental procedure could be applied to any application. One category of model is software reliability models
that are included in IEEE/AIAA standards [1]. It is usually assumed that these models are the most appropriate for
forecasting software reliability. However, this might not always be the case. For example, some researchers found
that applying simple exponential smoothing to the time series resulted in higher accuracy for forecasts than more
sophisticated models. This leads them to believe that in certain cases, depending on the characteristics of the time
series, naïve methods of forecasting may produce more accurate results [2]. Therefore, we experimented with several
software reliability models and with simpler models—exponential smoothing, autoregressive integrated moving aver-
age, moving average, and regression. Plots were made to compare the forecasts of reliability metrics against the actual
data. The mean relative error (MRE) and mean square error (MSE) were used to compare forecasting accuracy [3].

A. Software Reliability Growth Modeling
Reliability growth for software is the improvement of software reliability over time, accomplished through the

systematic removal of software faults. The rate at which reliability grows depends on how fast faults can be uncovered
and removed. A software reliability growth model allows project management to track the progress of the software’s
reliability through a series of tests.

If the assessed growth falls short of the planned growth, management will have sufficient notice to develop new
strategies, such as the reassignment of resources to attack identified problem areas, adjustment of the project time
frame, and reexamination of the feasibility or validity of requirements.

Measuring and projecting software reliability growth requires the use of an appropriate software reliability model
that describes the variation of software reliability with time. The parameters of the models are estimated from failure
data collected during test [4].
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Thus, given the importance of software reliability modeling, as described above, we want to ensure that forecasts
are accurate and, if the models do not forecast accurately, to consider and evaluate alternate models.

II. Software Reliability Forecasting Models
A. Brooks and Motley Binomial Model

Several software reliability models were used in the forecasting experiment to see how they would fare relative to
other models, such as exponential smoothing and regression. Among these models is the Brooks and Motley binomial
model (BMBM) that uses failure count data for parameter estimation. This model is among those that recognize that
not all the code is tested equally and that the code may not be complete at the time of testing. The model factors into
the forecasting equations of the modules that are under test [5]. The cumulative number of failures F(T ) forecast in
test period T is given by

F(T ) = (1 − (1 − q)ET ) (1)

where q is the constant probability of failure detection in each period and ET is the amount of test effort expended
in period T [6].

B. Yamada S Shaped Model
A second software reliability model used in the experiments is the Yamada S Shaped Model (YSSM) that derives

its name from assuming that a “learning curve” scenario applies (i.e., the number of faults found slowly ramps up as
the testers become familiar with the code, accelerates up quickly, and then levels off as the remaining faults become
more difficult to find) [7]. This model’s forecasted number of cumulative failures F(T ) is given by

F(T ) = a(1 − (1 + bT )e−bt ) with both a, b > 0 (2)

For given values of F(T ), Eqs. (1) and (2) can be solved for T , the time forecasted to detect F(T ) cumulative failures
during test or operation.

Time to next failure T , cumulative failures F(T ), and mean number of failures in interval T , m(T ), are forecast
for BMBM and YSSM by using the SMERFS software reliability modeling tool [8].

C. Schneidewind Software Reliability Model
The third software reliability model used in the experiment is the Schneidewind software reliability model (SSRM)

that has the feature of only using the most relevant failure data in parameter estimates [9]. This feature is implemented
by using the collected failure data to find the value of the parameters s, α, and β that maximize the likelihood function.
These parameter values are used in forecasting equations (3), (4), (4a), and (7).

To forecast time to next Ft failure(s), when the current time is t and Xs,t failures in the range s, t have been
observed, Eq. (3) is used.

T (t) = log

[
α

(α − β(Ft + Xs,t ))/β

]
− (t − s + 1) for α > β(Ft + Xs,t ) (3)

Time to next failure is a critical forecast for safety critical systems such as the Shuttle. It is desired that it exceed the
mission duration [10]. It is also desirable that the differences in time to next failure forecasts [11] increase, reflecting
increasing mission safety, as shown in (3a).

�T (t, 1) < �T (t, 2), . . . , �T (t, n, −1) < �T (t, n) (3a)

where n is the number of tests.
The forecasted cumulative number of failures F(T ) to occur at time T is given in equation (4).

F(T ) = α

β
[1 − e−β(T −s+1)] + Xs−1 (4)
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The mean number of failures in the interval T , T + 1 is forecasted in equation (4a):

m(T ) = α

β
[e−β(T −s+1) − e−β(T −s+2)] (4a)

Since R(t), the reliability in interval T , is equal to the probability of xT = 0 failures in the Poisson process, as in
equation (5):

P(x) = (m(T )xT e−m(T ))/XT ! (5)

As a consequence of Eq. (5), we derive Eq. (6):

R(T ) = P(0) = e−m(T ) (6)

Then substituting equation (4a) into equation (6), we arrive at the reliability forecasting equation (7):

R(T ) = e−[(α/β) [e−β(T −s+1)−e−β(T −s+2)]] (7)

In order to compute the reliability forecasting error, it is necessary to compute the actual reliability at time T

in equation (7a), where xT is the number of observed failures in the interval T and F is the total number of
observed failures.

Ra(T ) = 1 − (xT /F ) (7a)

Furthermore, denoting Rs as the specified reliability, then the predicted reliability R(T ) should obey (7b) for all
values of T as follows:

R(T ) � Rs (7b)

III. Exponential Smoothing Model
The rationale for using exponential smooting model (ESM) to forecast future values in a time series is that,

according to [12], significant changes are possible in the data. Therefore, some provision must be made for easily
adjusting the number of past observations that are incorporated in the forecast. Whenever there is a significant change
in the pattern, computations should be made using only the most recent observations. We can apply ESM—a simple,
yet effective model for forecasting the occurrence of events at time T —based on the actual the value at time T − 1
and the forecast at time T − 1 [12,13].

Traditionally, ESM forecasts are made by guessing at the value of the smoothing parameter α. While guessing
may yield an accurate forecast, we think this is an unsatisfactory procedure for two reasons: 1) it is difficult to know
which value of α to select and 2) a constant α does not account for variations in the data. Therefore we develop a
method below of estimating a variable α from known data.

Definitions
1. Item: x

2. α: smoothing parameter
3. Actual x at time T = xT

4. Actual x at time (T − 1) = xT −1

5. Actual x at time (T − 2) = xT −2

6. Forecast at time (T − 1) = x(T −1)
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Using definitions 1, 2, 5, and 6, we develop Eq. (8) as follows:

Forecast of x at time (T − 1) = x(T − 1) = αxT −2 + (1 − α)x(T − 2) (8)

Then using definitions 1, 2, 4, and Eq. (8) recursively, we produce Eq. (9) as follows:

Forecast of x at time T = x(T ) = αxT −1 + (1 − α)x(T − 1) (9)

Expand the forecast of x at time T , using Eqs. (8) and (9) to produce equation (10) as follows:

T = x(T ) = αxT −1 + (1 − α)x(T − 1) = αxT −1 + (1 − α)∗(αxT −2 + (1 − α)x(T − 2)) (10)

In order to not guess at a constant value of α, which is the traditional approach, we develop the following equations
for estimating α, corresponding to the three possibilities for the relationship between xT −1 and xT −2. We use a variable
value of α. This value cannot be estimated at time T because as shown in equations (11), (12), and (13), it depends
on prior values of the data. Therefore, from this point forward, we use αT −1 to indicate this dependency.

If xT −1 > xT −2, then αT −1 = (xT −1 − xT −2/xT −1 (for xT −1 > 0) (11)

If xT −1 < xT −2, then αT −1 = (xT −2 − xT −1)/xT −2 (for xT −2 > 0) (12)

If xT −1 = xT −2, then αT −1 = 0 (13)

Then, setting the forecast at time (T − 2) = the actual value: x(T − 2) = xT −2, we generate equation (14). Note
that this is necessary because, of course, we must use the starting value xT −2 for this recursive process.

Forecast of x at time T = x(T ) = αT −1xT −1 + ((1 − αT −1) ∗ αT −1xT −2) + ((1 − αT −1)
2xT −2) (14)

Once the appropriate value of αT −1 is estimated, using equation (11), (12), or (13), and Eq. (10) is simplified, the
forecast of x at time T is made in Eq. (15) as follows:

x(T ) = αT −1(xT −1 − xT −2) + xT −2 (15)

As was the case for SSRM, it is desirable for certain time series, such as time to next failure, to be increasing as
the number of tests n increases. This is expressed in equation (15a).

�x(T ) < �x(T − 1), . . . , �xT (T − n − 1) < �xT (T − n) (15a)

A. Geometric ESM
A variant of ESM is to use an α that increases at an increasing rate: the geometric ESM (GESM) [14]. This

concept is implemented by using eα in the forecasting equations. In our experiments, this approach has provided
better forecasting accuracy than ESM.

IV. Moving Average Model
The rationale for moving average model (MAM) is that since data is usually varying across time periods, it makes

sense to capture the variation by computing a varying average, rather than a single average across all time periods.
This idea is expressed in equation (16).

x(T ) =
∑n

i=1 xT −i

n
(16)

where x(T ) is the forecast for time T of item x, xT −i is actual value of item x for ith period preceding T , and n is
the number of time periods to include in the moving average.

When MAM is used to forecast differences in x(T ) that should be an increasing series (i.e., time to next failure),
Eq. (15a) comes into play.
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V. Regression Model
Regression involves making the “best” fit of a dependent variable to an independent variable (e.g., fit cumulative

failures to software test time), based on a fit criterion such as least squares. Unfortunately, if major jumps occur in
the future data that were not included in the fitted data, the regression equation could result in inaccurate forecasts
in the future space, even though there was a good fit in the historical space. We will illustrate this phenomenon in
one of our forecasting experiments.

VI. Simple ARIMA Model
A simple version of the autoregressive integrated moving average (ARIMA) model uses the immediate past value

xT −1 and the average of the difference of two immediate past values xT −1 and xT −2, to forecast the current value
x(T ) [15] as follows:

x(T ) = xT −1 + xT −1 − xT −2

2
(17)

Again, it may be necessary to forecast differences in x(T ) when it is desirable that the time series increase. As in the
case of GESM and MAM, this can be accommodated by employing Eq. (15a).

VII. Failure Data Used in Experiments
The failure data used in the experiments is shown in the Appendix: NASA Space Shuttle release OI4. The first

seven entries are the data used to estimate parameters for the software reliability models SSRM,YSSM, BMBM, and
the regression model. The last six entries are compared with forecasted values in this range. In the case of GESM,
ARIMA, and MAM, forecasts are made for only the eighth failure count interval due to the limitation of these models
to forecast beyond the actual data.

VIII. Forecast Results
A. Time to Next Failure

Figure 1 displays the results for the three software reliability models, with BMBM registering as the most accurate,
although forecasting accuracy, as computed by MRE, is not notable. This figure also shows that all the models
forecast time to next failure to exceed the mission duration that is specified as a typical Shuttle mission duration.
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Fig. 1 NASA Space Shuttle OI4: predicted time to next failure T vs number of failures Ft .
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Fig. 2 NASA Space Shuttle OI4: forecast time to next failure t vs number of failures Ft .

It is advantageous to forecast using more than one model so that bounds are provided between the pessimistic and
optimistic forecasts.

Figure 2 shows GESM, ARIMA, and MAM, n = 2, with all models providing better forecasting accuracy than
the software reliability models in Fig. 1. However, we hasten to add that the models in Fig. 2 have limited forecasting
range. These results suggest that software reliability models should be used when it is desired to forecast reliability
over an extended range, whereas GSEM, ARIMA, and MAM would be the choice if the interest is to forecast for
just one period beyond the end of the failure data.

Figure 3 shows what is perhaps a counterintuitive picture of the moving average computed for n = 2, 3, 4, and 5
samples, because the MRE of the forecasts is increasing rather than decreasing. The reason for this is that the time
to next failure series is monotonically increasing, and the average of n previous samples, can never catch up with the
increasing actual data.
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Fig. 3 NASA Space Shuttle OI4: moving average of time to next failure T vs number of failures Ft .
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Fig. 4 NASA Space Shuttle OI4: cumulative failures F(T) vs test time T .

A procedure for choosing the best value of n is to start with n = 2 and compute MRE. Then increase n. As soon
as MRE increases, choose the previous value of n.

B. Cumulative Failures
Figure 4 demonstrates the aforementioned problem with regression analysis, wherein in the test time range

T = 0.67–7.43 thirty-day intervals, there is a good fit. However, when we attempt to use the regression equation
for forecasting cumulative failures beyond the range where the regression equation was fitted, T = 3.63−178.43
intervals, the fit is poor. In order to protect against inaccurate forecasts, several models should be used and their
forecast errors compared in order to eliminate any outlier forecasts.

Another interesting result is shown in Fig. 5 where the Brooks–Motley model comes in first in the forecasting
accuracy race. However, in general, it is difficult to tell a priori which is the best model to use for a given application.
Therefore users should experiment with several models, comparing forecasts with actual future data.
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Fig. 5 NASA Space Shuttle OI4: cumulative failures F(T) vs test time T .
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Table 1 Forecasting model error analysis

Number of Number of T : time to T : time to next F(T ): cumulative F(T ): cumulative
forecasts forecasts next failure next failure failures failures

Model for T for F(T ) failure MRE failure MSE MRE MSE

GESM 5 5 0.1554 6.81 0.1708 1.0822
ARIMA 6 6 0.1507 6.35 0.1815 0.9167
SSRM 6 13 0.7555 7926 1.5970 143
YSSM 6 13 0.6985 7607 1.8968 120
BMBM 6 13 0.6491 7224 0.3343 0.82
MAM (n = 2) 6 6 0.2596 8.49 0.3554 0.4167
Regression 8 1.1888 156

IX. Error Analysis
Two types of error analysis are used to assess forecasting accuracy: 1) MRE to evaluate error relative to the actual

values and MSE to evaluate the variance of the difference between actual and forecasted values. These are shown
in Eqs. (18) and (19), respectively, where AT and PT are the actual and forecasted values at software test time T ,
respectively, and n is the number of samples (i.e., software tests). Table 1 tabulates MRE and MSE for each of the
forecasting models, for time to next failure and cumulative failures.

MRE =
∑n

i=1 |(AT − PT )/PT |
n

(18)

MSE =
∑n

i=1(AT − PT )2

n
(19)

In performing forecasting error analysis, it is important to observe the trend of relative errors across the software
tests to see whether the errors stabilize. From the example in Fig. 6, we can see that the software reliability models
have this property. If this were not the case, there would be concern that as tests progress, time to next failure goals
would be unattainable. The lesson learned is that when choosing a forecasting model, the error trends, using historical
data, should be evaluated in terms of MRE and RE trend. Based on these criteria, the selected model would have the
best prospect of providing the most accurate forecasts in the future. In our example, BMBM would be that model for
time to failure forecasts.
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Fig. 6 NASA Space Shuttle OI4: forecasted time to next failure relative error RE vs number of tests n.

547



SCHNEIDEWIND

X. Forecasting Accuracy Improvement
Some researchers advocate selecting the best model by using models to forecast for a given set of failure data

and then picking the one with the best accuracy [16,17]. They suggest comparing a forecast with the actual future
observations, and recursively building up a sequence of such observations and forecast comparisons. From this
sequence, we should be able to gain information about the accuracy of past forecasts, and make a decision about
the current forecast (i.e., which model to trust, if any). The basic idea in analyzing model forecasting accuracy is to
perform recursive comparison of forecasts with eventual actual data [18]. Another idea is to combine models such
that one model that has the best accuracy in a lower range of the data is joined with another model that has the best
accuracy in a higher range of the data [19]. This is an interesting idea but we did not find that it worked when applied
to the data in the Appendix.

Our approach is to produce a modified forecast MT in test time T by multiplying the relative error RE(T ),
computed in test time T , by the observed value AT −1 in test time T − 1, and adding this result to the unmodified
forecast PT in test time T as follows:

MT = PT + (RE(T ) ∗ AT −1) = PT +
[
(AT − PT ) ∗ AT −1

AT

]
(20)

Unlike the computation of relative error in Eq. (18), which is an absolute quantity, relative error in Eq. (20) is
a signed quantity to allow the modified forecast MT to reflect either a decrease or increase, depending on whether
RE(T ) is negative or positive, respectively.

A. Forecasting Results
1. Time to Next Failure and Cumulative Failures

We see that dramatic improvements in forecasting accuracy can be obtained can be obtained by applying Eq. (20)
for both time to next failure and cumulative failures. For example, Fig. 7 shows the gains in forecasting accuracy
achieved by YSSM and SSRM by modifying the time to next failure forecasts. This experience leads us to conclude
that forecasts should be revised according to Eq. (20), even for reliability models like SSRM, YSSM, and BMBM,
since it is a lot quicker and cheaper than the alternative of reestimating parameters and reforecasting, using more
recent failure data (Table 2).

2. Mean Number of Failures in Interval
We continue to demonstrate the benefit of using Eq. (20) to improve forecasting accuracy by providing examples

in Fig. 8 that show improvement for SSRM and ARIMA for mean number of failures in the interval T . The entire
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Table 2 Error analysis with forecasting model improvement: T and F(T)

Number of Number of Original Improved Original Improved
Model forecasts for T forecasts for F(T ) forecast MRE forecast MRE forecast MRE forecast MRE

GESM 5 5 0.1554 0.0889 0.1708 0.1464
ARIMA 6 6 0.1507 0.0451 0.1815 0.0997
SSRM 6 13 0.7555 0.6782 1.5970 0.9265
YSSM 6 13 0.6985 0.6109 1.8968 0.3236
BMBM 6 13 0.6491 0.2827 0.3343 0.0547
MAM (n = 2) 6 6 0.2596 0.0553 0.3554 0.0313
Regression 8 1.1888 0.1491

error record for all the models is shown in Table 3. Note that since the variable alpha GESM requires division by
members of the data set to compute alpha, and there are zeros in the data set (see Appendix), it is infeasible to use
GESM for these data.

3. Change in Time to Next Failure
As mentioned earlier, we hope to witness increasing values of time to next failure as the number of software tests

increase, in order to have confidence that mission safety is increasing. In Fig. 9, MAM, n = 2, is confidence building
but YSSM is not. However this is not the end of the story because, as shown in Fig. 9, MAM has a highly restricted
forecast range compared withYSSM. Thus when evaluating forecast models, we should consider whether a desirable
attribute has been achieved (e.g., increasing values of time to next failure) and whether the forecast range is adequate.
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Fig. 8 NASA Space Shuttle OI4: forecasted mean failures in interval relative error RE(T) vs test time T .

Table 3 Error analysis with forecasting model improvement: m(T)

Mean number of failures in interval (T ): m(T )

Model Number of forecasts MRE: original MRE: modified

ARIMA 11 0.8810 0.4754
SSRM 9 0.4535 0.3530
YSSM 12 0.6064 0.4878
BMBM 9 0.3568 0.1621
MAM (n = 2) 11 0.7019 0.2994
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4. Reliability
Again, it is proven that making adjustments to original forecasts, using Eq. (20), are capable of significant

improvement in reliability and reliability forecast error as evidenced by Fig. 10. In this figure we show that the
original SSRM forecast does not meet the reliability specification until relatively late in the forecast range, whereas
the revised forecast satisfies the specification much earlier.

XI. Summary of Forecasting Results
Based on Figs. 1–10 and Tables 1–3, for NASA Space Shuttle OI4, it is evident that there is no one model

that is superior for all types of forecasts. When forecasts are required across a large range of software test time,
software reliability models are appropriate. For a restricted range, GESM, ARIMA, and MAM are competitive with
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the software reliability models and, indeed, in some cases provide higher accuracy. For the latter models, they are
limited in accurately forecasting beyond the range of the actual data.

We recognize that the applicability of the results may be limited to the Shuttle failure data although these data
are typical of those for safety critical systems. Whether the results would be applicable to other software, such as
commercial systems, could only be determined by additional research.

Appendix
NASA Space Shuttle Software Release O14

Thirty-day failure Time to next Cumulative
count intervals failure (days) Failure count failurers

0.67 20 1 1
4.33 130 0 1
4.90 147 0 1
5.27 158 1 2
6.00 180 2 4
7.00 210 1 5
7.43 223 2 7
13.63 409 1 8
16.93 508 1 9
27.07 812 1 10
43.80 1314 1 11
135.33 4060 1 12
178.43 5353 1 13
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